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Leveraging 𝐵!"  Fields on Multi-modal MRI Harmonization Across Imaging RF 
Coils 
SPECIFIC AIMs  

Ultra-High Field (UHF) Magnetic Resonance Imaging (MRI) (≥	7 Tesla) has shown great potential in 
providing higher resolution, increased signal-to-noise ratio (SNR), and decreased scan time. However, these 
benefits come with a cost in transmit field (𝐵!") inhomogeneity, which is manifested as high signal in some 
regions, but low signal in other regions. Transmit field inhomogeneity is one of the major impedances in the 
UHF MRI. There has been an ongoing effort to reduce the 𝐵!" inhomogeneity and localized heating in UHF 
neuroimaging [1, 2]. Various types of Tic-Tac-Toe (TTT) shaped multi-channel radio frequency (RF) transmit 
(Tx) coils have been proposed and have successfully demonstrated a more homogeneous transmit field than 
commercially available RF coils at 7T regardless of the loading shape and size [3, 4]. Currently, a 16-channel 
transmit array TTT design is being used for more than 30 National Institute of Health (NIH) funded research 
studies at the University of Pittsburgh. Although, the 16-channel TTT head coil mitigates the 𝐵!"  field 
inhomogeneity compared to the commercially available RF coils at 7T, some 𝐵!"  field improvement is still 
needed. While introducing another refined head coil improves overall MR signal across the whole head, 
additional contrast variance would be introduced if the head coil is switched during an ongoing research study 
[5].  

Aside from the transmit fields, the differences in the receive fields would also affect the soft tissue 
contrast. These field patterns produced by the transmitter and receiver are highly dependent on the RF coil 
design [6]. For UHF MRI, it’s challenging to achieve a homogenous transmit field. Additionally, a homogenous 
receive field also is not realistic in the real world. To reduce the effect that receive field has on the images, we 
will first apply bias field correction on all the images across the two domains before the actual image translation 
[7]. The primary objective of this work is to leverage deep generative adversarial network (i.e., 
CycleGAN) and 𝑩𝟏" fields to integrate the MR data across domains. This work aims to reduce soft tissue 
contrast variation between images acquired using different head coils. A successful implementation of the 
proposed method ensures smooth transition adopting the newly developed RF head coil from an imaging 
analysis perspective.  
Aim1: Obtain the B1 maps and learn the B1 maps translation across two different head coils   

In this work, we will leverage RF coil hardware differences to aid the structural data integration across 
different head coils. For our load invariant coil design, we believe that there are two transmit field patterns for 
the two head coils regardless of the shape, size, and the loading position [8]. B1 map measures the general 
transmit patterns of the loading object and is therefore intrinsically of low resolution. To obtain the B1 maps of 
the two head coils retrospectively, light weight pix2pix model becomes a good option to infer the transmit 
pattern from the already acquired structural scans [9]. After obtaining the respective B1 maps, we will 
implement a CycleGAN to learn the B1 map translation across two different head coils.  
Aim2: Implementation and evaluation of the proposed method for data harmonization across 
structural modalities  

MR image contrast variation is a major challenge in multi-site studies. Some major factors that can 
explain the contrast discrepancy are magnetic field strength, RF coil differences, and pulse sequence design 
[10]. We believe that the learned B1 map translation can further help the image integration via CycleGAN. 
Additionally, we want to demonstrate that the proposed method is robust in conversion on various structural 
modalities (i.e., T1 weighted images, T2 weighted images, etc.). Lastly, we will evaluate the proposed model 
performance on paired patient images. We expect that our model will have overall lower tissue contrast 
variation, and closer mean to that of the real images across modalities than the CycleGAN model that is 
learning without leveraging the 𝐵!" map translation.  
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Research Strategy 
A. Significance 

Magnetic resonance imaging has been a tremendous tool helping us better identify soft tissue contrast 
compared to other conventional imaging techniques such as X-ray, and CT [11]. However, differences in 
hardware design, magnetic field strength, as well as a lack of standardization in acquisition protocols often 
result in tissue contrast variances between sites [10]. The contrast variation across sites thus requires 
additional image preprocessing to mitigate the contrast discrepancy, which not only demands additional efforts 
but also may introduce undesired bias especially in a multi-site study.  

Among these major factors, differences in RF coil and magnetic field strength have the most significant 
impact on the image quality. 7T imaging has an operational frequency of 297.2MHz which translates to an RF 
wavelength of 13 cm [12]. On average, the adult size head is much larger than the 7T RF wavelength. 
Consequently, this shortened wavelength leads to nonuniform excitation (𝐵!") and sporadic spots of nonvisible 
tissue contrast on the MR images [12]. Several generations of TTT shaped RF coil have been developed at the 
University of Pittsburgh to remedy the 𝐵!" inhomogeneity for 7T neuroimaging. These multi-channel RF array 
designs have demonstrated superior image quality than commercially available RF coils. Some examples that 
showcase the advantages that TTT coils have over other coils include better subcortical white matter and gray 
matter contrast and reduced localized RF heating [13].  

However, there also exists different RF transmit field excitation patterns across these TTT head coils. 
Currently, more than 30 NIH funded neuroimaging research studies have been using our 16-channel Tx coil. 
With the recent deployment of a 60-channel head coil, all studies are transitioning into using the newly 
optimized head coil. While the newer generation offers even higher SNR, urgent efforts are needed to mitigate 
the contrast variation between the MR images acquired using these two distinctive coils.   

The objective of this project is to develop a deep learning GAN based model that leverages the RF 
hardware differences to help integrate MR data regardless of the imaging modalities. In our previous work, 
CycleGAN has shown great potential in unpaired image translation from 3T to 7T [14].  Thus, we aim to utilize 
similar model structure while incorporating the transmit field information. We have high confidence that our 
proposed method will outperform the simple CycleGAN model. A successful deployment of our proposed 
model will ensure low intra-site image contrast discrepancy. Moreover, some variations of this project will 
provide much needed support for multi-site MR studies.  

 
Figure 1 60 Channel-Tx Tic-Tac-Toe (TTT) head coil and B1+ field simulation results. (A) 3D model assembly of the 60 channel TTT 
coil. (B) Combined transmit field patterns with two different loading cases (i.e., Duke and Ella from the virtual family [15]). The 
simulation results from these two different loading cases proves that TTT head coil is able to produce similar RF excitation patterns 
regardless of the loading shape and size.  

B. Innovation  
While many other studies have used GAN based models to integrate inter-site MR images, the 

approach proposed in this project will be the first of its kind. Although, many previous works [16, 17] 
demonstrated remarkable translation across sites, these trained neuro networks are limited within the imaging 
modality. For example, a network trained on T1-weighted images could only be applied to T1-weighted image 
translation. We believe that most of the MR image variation could be explained by the underlying RF hardware 
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differences. Deploying such a novel neuro network that inherits these hardware differences enables greater 
generalizability in MR multi-modal harmonization. 

 
Figure 2 Electromagnetic (EM) simulation results from the two generations of TTT head coils. (A) 3D model assembly of the 60 channel 
TTT coil. (B) Duke model EM simulation results from the 60-channel head coil. (C) 3D model assembly of the 16 channel TTT coil. (D) 
Duke model EM simulation results from the 16-channel head coil. The two respective EM simulation results show that there exist two 
homogenous yet distinctive transmit patterns, which result in tissue contrast variation on structural images [13].   

C. Approach 

Aim1: Obtain the B1 maps and learn the B1 maps translation across two different head coils   
 
Aim1a: Obtain the B1 maps via pix2pix GAN and structural MR images 

Before learning the transmit pattern discrepancies, B1 maps from the two different head coils should be 
collected. Although, B1 map sequence is crucial during the coil development period, very few in-vivo B1 maps 
were collected for a research study. To construct a generative model that infers the RF excitation pattern from 
the structural scans, some paired in-vivo images should be collected. We plan on acquiring T1-weighted 
MPRAGE and B1 map on volunteers using the two head coils respectively. The number of volunteers needed 
will be determined by the model performance. However, we do not expect to recruit more than 50 volunteers. 
After the data collection, B1 map will be synthesized using a 3D pix2pix GAN illustrated in the figure below 
(Figure 3). We decide to utilize Pix2Pix GAN because it is less memory intensive than other GAN architectures 
(i.e., CycleGAN) and assumes no pre-defining relationship on the paired images [9]. Although Pix2Pix model 
struggles to generate fine details on images, it is still able to capture the main features of the images, thus 
making it the perfect option for our task. Normally Pix2Pix model is applied to 2D image translation (i.e., gray 
scale images) or small-scale 3D image translation (i.e., color images). In this aim, we believe a 3D Pix2Pix 
model is more suitable because 2D model might fail at preserving connections between slices.  

The most common loss function implemented in deep learning-based models is binary cross entropy 
(BCE). However, due to the presence of the stochastic noise on the B1 maps, BCE loss should be re-assessed. 
Recent years, a new loss function that quantifies the differences of two distributions has appeared in some of 
the GAN research studies. Wasserstein loss, or commonly referred as Earth Mover’s Distance, measures the 
distance between two probability distributions [18]. It could be informally interpreted as the minimum energy 
required to move pile of dirt in the shape of one probability distribution to the shape of the other distribution.  

W-Loss can be described like the following expression: 𝒎𝒊𝒏𝒈𝒎𝒂𝒙𝒄𝔼(𝒄(𝒙)) 	− 	𝔼(𝒄(𝒈(𝒛))), where g is 
the generator, c is the critic/discriminator, z is the bottleneck information, and x is the real images. Intuitively, in 
W-loss, the generator wants to minimize the fake image distribution distance from the real images, whereas 
discriminator aims to maximize the distance between the two distributions. One limitation of the W-loss is that it 
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assumes that the discriminator being 1-Lipschitz continuous, meaning that the gradient of the discriminator 
function should not be greater than 1 at any points on the function [18]. To combat the limitation, many 
approaches have been proposed in the past (i.e., weight clipping, weight penalization) [19]. In this project, we 
will proceed with the weight penalization approach as it has shown better performance in the previous work 
[20] .  

 
Figure 3 Pix2Pix GAN model architecture. This architecture illustrates that T1-w images are first encoded into the bottleneck of a much smaller 
dimension. Then the bottleneck information is passed on to the decoder to bring the compressed information into the desired B1 map dimension. 
The generated fake B1 maps will be compared against the real B1 maps using the Wasserstein loss function. 

Aim1b: Learn the B1 map pattern translation via CycleGAN 
 GAN networks are notoriously difficult to train since it is intrinsically a mini-max game (i.e., discriminator 
and generator both desire different loss function outcome). To ensure the generalizability on unpaired images 
as well as minimum overfitting, a GAN model that incorporates cycle consistency loss was invented and is 
commonly referred to as CycleGAN [21]. CycleGAN is different than Pix2Pix GAN in that CycleGAN has two 
different generators while Pix2Pix GAN only has one. This model variation ensures robust translation between 
two different domains without the paired images as CycleGAN learns a two-way mapping between the 
domains simultaneously. For MR data harmonization problems, it is unrealistic to have coupled patient images 
across sites, which requires us adopting the GAN models that has similar properties as CycleGAN.  
 The proposed model architecture is illustrated below. The first generator maps the transmit field from 
the 16-channel head coil to the 60-channel head coil. The generated fake 60-channel B1 map is then passed 
into the second generator that maps the transmit field from the 60-channel domain back to the 16-channel 
domain. We will implement Wasserstein loss with weight penalty to train the two generators and the two 
discriminators. 

 
Figure 4 CycleGAN model architecture for translating unpaired B1 maps from the 16-channel head coil to the 60-channel head coil. With the 
incorporated cycle consistency loss, the two generators and the two discriminators will learn the two-way mapping between the two domains 
simultaneously.  
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Aim2: Implementation and evaluation of the proposed method for data harmonization across 
structural modalities 
 
Aim2a: Implementing structural image translation via CycleGAN 

For the actual image translation, we decide to implement similar architecture to the B1 map translation, 
as it is extremely rare to have patient images in a paired-wise fashion. The key distinction in this model is that 
the latent images in the two generators will be first passed on to the trained networks that specializes in the B1 
map conversion. Then they will be further processed by the decoder models. To prevent the catastrophic 
forgetting, the learned B1 map translation generators will be frozen during training.  

In our previous work on semantic segmentation, we discovered that even with multi-domain images, the 
model was able to achieve convergence provided with the correct labels. Inspired by this result, we will 
incorporate multi-modal MR images during training (e.g., T1-w, T2-w, FLAIR etc.).  This interleaves fashion 
training will help improve the model’s generalizability across MR image modalities.  

The translation model structure is illustrated below (Figure 5). Similar to that of the B1 map translation, 
this model has two losses: the cycle consistency loss and the adversarial loss. However, what makes this 
proposed model unique is the usage of the pretrained B1 map generators. We will freeze these B1 map 
generators during the actual image translation during the training process to prevent catastrophic forgetting. 
We believe that there exist similar differences in these latent images to that of the B1 maps. Therefore, 
applying these pretrained generators on the image latent space will translate the underlying differences 
between images across RF coils.  
 
Aim2b: Evaluation on paired images   
 To assess the proposed model performance, some evaluation criteria should be determined 
beforehand. Although, loss functions implemented during training give some preliminary evaluation on the 
training process, it does not offer qualitive assessment on the generated images. For example, a low loss 
during training only indicates that the models are no longer learning and may experience mode collapse [22].  
Additional metrics will be used to achieve impartial assessment after training. In our previous work on 3T to 7T 
MR image translation, we discovered that there are significant changes in the different tissue voxel counts. 
Therefore, we will use the mean and the standard deviation of the number of voxels of specific tissues on 
paired patient images to evaluate the image translation performance. Specifically, we will examinate the 
differences in white matter, grey matter, and cerebral spinal fluid. Additionally, we will evaluate our model 
translation using all commonly acquired structural MR scans (e.g., T1-w, T2-w, and FLAIR images).    

 
Figure 5 CycleGAN model architecture for translating unpaired images from the 16-channel head coil to the 60-channel head coil. With the 
incorporated cycle consistency loss, the two generators and the two discriminators will learn the two-way mapping between the two domains 
simultaneously. 

Expected Results 
Within one imaging modality, we expect that our translated images will have significant lower variance 

and closer means to that of the real 60 channel images in voxel counts across tissue types than the generated 
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images from the CycleGAN without using the pretrained B1 map generators. Lastly, leveraging these RF coil 
differences will aid the generators’ training in the GAN model, thus enabling more efficient training.  
Anticipated Problems and Alternative Strategies  

While it is ideal to generate B1 maps from structural images via a 3D fashion, this approach may face 
computer hardware issues due to limited GPU memories. One way to bypass the expensive 3D computations 
is to conduct electromagnetic simulations to calculate the transmit field pattern via an in-house finite difference 
time domain simulation algorithm. To get the simulation loading geometry, we will use FreeSurfer to segment 
the patient head geometry. Although, electromagnetic simulation will be relatively time consuming, it will give 
us the most accurate B1 maps.  
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